a2 United States Patent

Zizka et al.

US009485214B2

US 9,485,214 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

USE OF REVERSED DNS RECORDS FOR
DISTRIBUTED MAPPING OF ASYMMETRIC
CRYPTOGRAPHIC KEYS TO CUSTOM
DATA

Inventors: Ondiej Zizka, Brno (CZ); Peter
Skopek, Myjava (SK)

Assignee: Red Hat, Inc., Raleigh, NC (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1109 days.

Appl. No.: 13/484,876
Filed: May 31, 2012

Prior Publication Data

US 2013/0326004 Al Dec. 5, 2013

Int. CL.

GOGF 15/16 (2006.01)

HO4L 29/12 (2006.01)

U.S. CL

CPC ... HO4L 61/304 (2013.01); HO4L 61/1511

(2013.01)

Field of Classification Search

CPC ..o HO4L 9/00; HO4L 29/12066; HO4L
61/1511; HO4L 67/306

USPC i 709/245, 203, 225, 217

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
8,650,245 B1*

2002/0138649 Al*
2003/0163567 Al*

2/2014 Ashleycocooviiiii 709/203
9/2002 Cartmell et al. 709/245
82003 McMorris HO4L 29/06

709/225
2008/0034118 Al1* 2/2008 Jinmei et al. 709/245
2009/0164597 Al* 6/2009 Shuster HO4L 29/12066

709/206
2012/0079055 Al* 3/2012 Robinson 709/213
2013/0036307 Al* 2/2013 Gagliano et al. 713/171
2013/0290563 Al* 10/2013 Fleischman et al. 709/245

* cited by examiner

Primary Examiner — Mohamed Ibrahim
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

A server sends a lookup request for a first domain name to
a Domain Name System (DNS) in response to receiving data
associated with a user. The first domain name includes the
data associated with the user. The server receives, an Internet
Protocol (IP) address corresponding to the first domain name
from the DNS. In response to receiving a request for data,
the server determines an Internet Protocol (IP) address,
wherein the request comprises an identifier, and wherein the
IP address is determined based on the identifier. The server
sends a reversed domain name lookup request for the IP
address to the DNS. The server receives a domain name in
response to the reversed domain name lookup request from
the DNS. The data is determined based on the received
domain name.

17 Claims, 5 Drawing Sheets

100

DNS

Distributed
Mapping Module
130

Services Server

Network
104

Client
102

U.S. Patent Nov. 1, 2016 Sheet 1 of 5 US 9,485,214 B2

100

DNS
110

Distributed
Mapping Module
130

Services Server
120

Network
104

Client
102

FIG. 1

US 9,485,214 B2

Sheet 2 of 5

Nov. 1, 2016

U.S. Patent

%4
$95S9JppY
dl
(1]4 —_—
(4174
SINPo
a|npoyy abeu
uopisinboy rwo_\,_ssm:wm
gleqg wojsn)

¢ Ol

09¢
SSWeN ulewo(

002 ainpojy Buiddey painquisiq

ort
SNd

4[4
$asSaIPPY d

0S¢
9l0]S Eled

U.S. Patent

Nov. 1, 2016 Sheet 3 of 5 US 9,485,214 B2

/300

(START)
305
Receive custom data and identifier
310
Generate a domain name including custom data and identifier
315
Send a lookup request for the generated domain name
320

Receive an IP address from the DNS system for the generated
domain name

(0 >

FIG. 3

U.S. Patent

Nov. 1, 2016 Sheet 4 of 5
(START)

Receive identifier

Determine IP address using identifier

Send reversed domain name lookup request including IP
address

Receive domain name

A

Determine custom data based on received domain name

O

FIG. 4

405

410

415

420

425

US 9,485,214 B2

/400

U.S. Patent

Nov. 1, 2016 Sheet 5 of 5

US 9,485,214 B2

500
e
Processor 502 A
Instructions 522
Video Display
Distributed Mapping 510
Module 200
Alpha-Numeric Input Device
512
Cursor Control Device
514
Main Memory 504 Signal Generation Device
516
Instructions 522
Distributed Mapping o
Module 200 b
[52)
& Data Storage Device 518
Machine-Readable Storage Medium
524
Instructions 522
. Distributed Mapping
Static Memo
505 Module 200
Network Interface Device
508

FIG. 5

US 9,485,214 B2

1
USE OF REVERSED DNS RECORDS FOR
DISTRIBUTED MAPPING OF ASYMMETRIC
CRYPTOGRAPHIC KEYS TO CUSTOM
DATA

TECHNICAL FIELD

Embodiments of the present invention relate to data
management, and more particularly, to a technique of using
reversed DNS records for distributed mapping of asymmet-
ric cryptographic keys to custom data.

BACKGROUND

There are many online services available to users, includ-
ing banking, shopping, etc. When a user inputs a domain
name for a service in a web browser, the user’s computer can
generate a request for the domain name and send the request
to a Domain Name System (DNS), which provides an
Internet Protocol (IP) address to the user’s computer. The
user’s computer can then locate the service using the IP
address and load the service into the user’s web browser.

The DNS is a hierarchical distributed naming system for
computers, services, or any resource connected to the Inter-
net or a private network. The DNS associates information
with domain names assigned to each of the participating
entities. A Domain Name Service translates queries for
domain names (host names), which are easier to understand
and utilize when accessing the internet, into IP addresses for
the purpose of locating computer services and devices
worldwide. For example, the domain name www.example.
com translates to the IP addresses 192.0.43.10 (IPv4) and
2620:0:2d0:200::10 (IPv6).

The DNS makes it possible to assign domain names to
groups of Internet resources and users in a meaningful way,
independent of each entity’s physical location. Because of
this, World Wide Web (WWW) hyperlinks and Internet
contact information can remain consistent and constant even
if the current Internet routing arrangements change or the
participant uses a mobile device. Moreover, Internet domain
names are easier to remember than IP addresses such as
208.77.188.166 (IPv4) or 2001:db8:1£70::999:de8:7648:6e8
(IPv6). Users take advantage of this when they recite mean-
ingful Uniform Resource Locators (URLs) and e-mail
addresses without having to know how the computer actu-
ally locates them.

The DNS distributes the responsibility of assigning
domain names and mapping those names to IP addresses by
designating authoritative name servers for each domain.
Authoritative name servers are assigned to be responsible
for their particular domains, and in turn can assign other
authoritative name servers for their sub-domains. This
mechanism has made the DNS distributed and fault tolerant
and has helped avoid the need for a single central register to
be continually consulted and updated.

The DNS can store or cache the mapping of domain
names to IP addresses in DNS records. Moreover, the DNS
can store or cache reversed DNS records, which map IP
addresses to the domain names to which the IP addresses
belong. The mapping between domain name and IP
addresses may not necessarily be a one-to-one mapping, as
one domain name can map to multiple IP addresses, and one
IP address can map to multiple domain names. A reverse
lookup is a query of the DNS for domain names when the IP
address is known.

Currently, most IP addresses used in the DNS follow the
Internet Protocol version 4 (IPv4), which uses IP addresses

20

25

40

45

55

65

2

that are 32 bits (4 bytes) long. However, the growth of the
Internet has created a need for more addresses than are
possible with IPv4. Therefore, a new Internet Protocol, IPv6,
uses 128-bit (16 bytes) addresses, for an address space of
2128 (approximately 3.4x10°®) addresses. By switching to
IPv6, a much larger address space will be available for
addresses. In IPv6, 64 bits may be used for the address of a
domain name, and 64 bits can be an “interface 1ID,” which
can be used in any way.

Asymmetric cryptographic keys are used in cryptography
for authentication and content verification. Asymmetric
cryptographic keys can be binary data of a predefined length,
such as 2 kilobytes. To make identification of the asymmet-
ric cryptographic keys easier for humans, a subset of the
binary data, known as a fingerprint, can be extracted using
an algorithm predefined for the given key type. For example,
16 bytes may be extracted as a fingerprint of a 2 kilobyte
number. By using an algorithm that is predefined for the
given asymmetric cryptographic key, the fingerprint gener-
ated for an asymmetric cryptographic key may always be the
same. The subset of the binary data of an asymmetric
cryptographic key can practically be unique.

When using an online service, a user may need to enter in
information related to the user. Examples of information that
the service may need to know can include the user’s bank
account(s), the currency that the user accepts, the languages
that the user speaks, the user’s email address(es), user’s shoe
size, etc.

The information provided by the user can generally be
stored in a database for the service. However, storing the
information in this manner can be inefficient, as each service
used by a user stores the data, resulting in the duplication of
data if multiple services need the same information. More-
over, the user may have to re-enter the information for each
service used by the user.

There have been many approaches to creating an online
system which can reliably map information entered by a user
to a unique and secure identification for the user, such that
the user does not have to re-enter the information for each
service and to save storage space for the services. These
approaches include single-sign-on account extensions, infor-
mation formats (e.g., V-card), .name top-level domain
(TLD), and RFID-based solutions. However, none of the
current approaches are widely accepted or adopted. More-
over, these approaches may require additions to existing
technologies, may be impractical to implement, may be
expensive, or may require a physical device.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present invention will be
understood more fully from the detailed description given
below and from the accompanying drawings of various
embodiments of the invention.

FIG. 1 illustrates exemplary system architecture, in accor-
dance with various embodiments of the present invention.

FIG. 2 is a block diagram of a distributed mapping
module, in accordance with an embodiment.

FIG. 3 is a flow diagram illustrating an embodiment for a
method of storing custom data using reversed DNS records
for distributed mapping of asymmetric cryptographic keys to
the custom data, in accordance with an embodiment.

FIG. 4 is a flow diagram illustrating an embodiment for a
method of acquiring custom data using reversed DNS
records for distributed mapping of asymmetric crypto-
graphic keys to the custom data, in accordance with an
embodiment.

US 9,485,214 B2

3

FIG. 5 is a block diagram of an exemplary computer
system that may perform one or more of the operations
described herein.

DETAILED DESCRIPTION

Embodiments of the invention are directed to a method
and system for using reversed DNS records for distributed
mapping of asymmetric cryptographic keys to custom data.

A user using an online service may provide custom data
to the service by providing the data to a web browser
running on a computing system. For example, the user can
provide bank account information, currency information,
user’s email addresses, user’s shoe size, etc. to a website for
a service related to the provided information. Using reversed
DNS records and asymmetric cryptographic keys in a
Domain Name System (DNS), the custom data can be
mapped to the user, such that the user does not need to
provide the same data in the future.

The user can provide the custom data to the service, as
well as can provide an identifier, such as an asymmetric
cryptographic key. For example, the user can go to a service
provided by myshoesize.com, enter in an identifier “XYZ”
for the user and a shoe size of “size7”. Upon receiving this
information, the service generates a domain name including
the custom data, the user’s identifier, and the domain name
for the service. For example, the generated domain name
that is generated is “size7-XY Z.myshoesize.com.” The ser-
vice can request a DNS lookup from the DNS to determine
an IP address for the generated domain name. The DNS
lookup can return an IP address including the IP address
corresponding to the domain name of the service. For
example, the DNS lookup can return the IP address con-
taining “FA1C9288 029BCE62,” where FA1C9288 corre-
sponds to the IP address for the service myshoesize.com and
029BCE®62 corresponds to the user’s identifier.

Upon a subsequent request by the user, the user may
provide the user’s identifier to the service. Upon receiving
the identifier, the service can determine a lookup IP address
based on an IP address associated with the service and the
identifier. For example, the service for myshoesize.com
could be configured to assemble the IP address for myshoe-
size.com and the user’s fingerprint 029BCE62 to generate a
lookup IP address of “FA1C9288 029BCE62.” The IP
address associated with the service can be a website IP
address, data storage IP address, or any other IP address that
can be obtained by a client of the service. The service can
send a reversed domain name lookup for the IP address to
the DNS and receive a domain name back from the DNS.
For example, the received domain name returns a domain
name of “size7-029BCE62.myshoesize.com” for a reversed
domain name lookup for the IP address of FA1C9288
029BCE®62. The service can parse the received domain name
to obtain the user’s shoe size of “size7,” such that the user
does not have to re-enter this custom data.

FIG. 1 illustrates exemplary system architecture 100 in
which embodiments can be implemented. The system archi-
tecture 100 includes a Domain Name System (DNS) 110, a
services server 120, and a client machine 102 connected to
a network 104. Network 104 may be may be a private
network (e.g., a local area network (LAN), a wide area
network (WAN), intranet, etc.), a corporate network (e.g., a
private network for an organization such as a corporation),
a broadcast network, a public network (e.g., the Internet), a
wired network (e.g., Ethernet network), a wireless network
(e.g., an 802.11 network) and/or a cellular network (e.g., a
Long Term Evolution (LTE) network).

10

15

20

25

30

40

45

55

60

4

DNS 110 is a hierarchical distributed database system that
uses a client-server model. The nodes of the distributed
database system are name servers. Each domain has at least
one authoritative DNS server (not shown) that publishes
information about that domain and the name servers of any
domains subordinate to it.

Services server 120 may be a rackmount server, a router
computer, a personal computer, a portable digital assistant,
a mobile phone, a laptop computer, a tablet computer, a
camera, a video camera, a netbook, a desktop computer, a
media center, or any combination of the above. In one
embodiment, the services server 120 is deployed as a
network appliance (e.g., a network router, hub, or managed
switch).

The client machine 102 may be a personal computer (PC),
laptop, mobile phone, tablet computer, or any other com-
puting device. The client machines 102 may run an operat-
ing system (OS) that manages hardware and software of the
client machines 102. A client program (not shown), such as
a browser, may run on the client machines (e.g., on the OS
of the client machines) or may be accessible to the client
machines. The client program may be software, such as a
web browser, or hardware that can receive custom data
and/or an identifier (e.g., secure key) from a user.

During operation of system 100, a user can submit custom
data and/or an identifier for the user to a client program (not
shown). In one embodiment, the client program is software
that is running on client 102. In an alternate embodiment, the
client program is hardware (e.g., video camera) that is
associated with the client 102. The services server 120
receives the custom data and/or identifier from the client
device 102 over network 104, and processes and/or directs
these communications accordingly. In one embodiment, the
services system 120 can include a distributed mapping
module 130.

In response to receiving the custom data and the identifier,
the distributed mapping module 130 can generate a domain
name including the custom data and the identifier. The
custom data can be data that a user would like to save, such
that the user does not need to re-enter the data in the future.
The identifier is an identifier of the user, such as a secure key
(e.g., asymmetric cryptographic key), a fingerprint of a
secure key or other identifier, an alphanumeric identifier for
the user, etc. The generated domain name can include a
website domain name for a website associated with the user.
The generated domain name can be in a format that is
supported by DNS 110.

The distributed mapping module 130 can send a lookup
request for the generated domain name to the DNS 110.
DNS 110 can obtain a mapping for the generated domain
name to an IP address, and send the IP address to the
distributed mapping module 130. The distributed mapping
module 130 receives the IP address for the generated domain
name from the DNS 110. In some embodiments, the dis-
tributed mapping module 130 stores the received 1P address
in a memory (not shown) of services server 120.

In response to receiving an identifier subsequent to storing
the custom data, the distributed mapping module 130 can
determine an IP address using the identifier by combining
the identifier and an IP address of a server, such as services
server 120. In one embodiment, the IP address is for a
website requested by the user. In an alternate embodiment,
the IP address is for a website associated with a service
requested by the user. The identifier is an identifier of the
user, such as a secure key (e.g., asymmetric cryptographic
key), a fingerprint, an alphanumeric identifier for the user,
etc.

US 9,485,214 B2

5

The distributed mapping module 130 can send a reversed
domain name lookup request including the determined IP
address to DNS 110, and can receive a domain name from
the DNS 110. The distributed mapping module 130 can
determine custom data based on the received domain name
by parsing the received domain name and determining a
predefined portion of the received domain name as the
custom data.

FIG. 2 is a block diagram of a DNS 110 and a distributed
mapping module 200, in accordance with one embodiment
of the present invention.

The DNS 110 can store or cache one or more mappings
between an IP address and a domain name. In response to a
lookup request that includes domain name, the DNS 110 can
determine if the domain name is included in domain names
260, and can obtain an IP address from IP addresses 255 that
is mapped to the domain name. If a domain name is not
mapped to an IP address, the DNS 110 can determine an IP
address for the domain name and store the IP address in IP
addresses 255. In response to a reversed domain name
lookup request that includes an IP address, the DNS 110 can
determine if the IP address is included in IP addresses 255,
and can obtain one or more domain names from domain
names 260 that are associated with the IP address.

The distributed mapping module 200 includes a custom
data storage module 205, a custom data acquisition module
210, and IP addresses 215. Note that in alternative embodi-
ments, the functionality of one or more of the custom data
storage module 205, the custom data acquisition module
210, and the IP addresses 215 may be combined or divided.

The custom data storage module 205 can receive custom
data and an identifier. The custom data can be data that a user
would like to save, such that the user does not need to
re-enter the data in the future. The identifier is an identifier
of the user, such as a secure key (e.g., asymmetric crypto-
graphic key), a fingerprint, an alphanumeric identifier for the
user, etc.

In response to receiving the custom data and the identifier,
the custom data storage module 205 can generate a domain
name including the custom data and the identifier. The
generated domain name can include a service domain name.
In one embodiment, the custom data storage module 205
generates the domain name by concatenating the service
domain name, the custom data, and the identifier. In an
alternate embodiment, processing logic generates the
domain name by copying the service domain name into a
first predefined portion of the generated domain name (e.g.,
first segment of the domain name, top-level domain (TLD)
name, subdomain name (3’ rightmost segment), etc.), copy-
ing the identifier into a second predefined portion of the
generated domain name (e.g., the part of the domain name
after the first predefined portion, the middle segment of the
domain name, the part of the domain name to the left of the
custom data, etc.), and copying the custom data into a third
predefined portion of the generated domain name (e.g., the
last part of the domain name, the leftmost part of the domain
name, the subdomain name, etc.).

The custom data storage module 205 can send a lookup
request for the generated domain name to the DNS 110, and
receive an [P address for the generated domain name from
the DNS 110. In some embodiments, the custom data storage
module 205 can store the received IP address in IP addresses
215.

The custom data acquisition module 210 receives an
identifier. The identifier is an identifier of the user, such as
a secure key (e.g., asymmetric cryptographic key), a finger-
print, an alphanumeric identifier for the user, etc. The

10

15

20

25

30

35

40

45

50

55

60

65

6

custom data acquisition module 210 can determine an IP
address using the identifier by combining the identifier and
an IP address for a server associated with a service. In one
embodiment, the IP address is obtained from IP addresses
215. In one embodiment, the IP address is for a server
associated with the service requested by the user. In an
alternate embodiment the IP address is for a server of a
website associated with a service requested by the user.

The custom data acquisition module 210 can send a
reversed domain name lookup request including the deter-
mined IP address to DNS 110, and can receive a domain
name from the DNS 110. The custom data acquisition
module 210 can determine custom data based on the
received domain name by parsing the received domain name
and determining a predefined portion of the received domain
name as the custom data.

FIG. 3 is a flow diagram of an embodiment of a method
300 for storing custom data using reversed DNS records for
distributed mapping of asymmetric cryptographic keys to
the custom data. The method 300 is performed by processing
logic that may comprise hardware (circuitry, dedicated logic,
etc.), software (such as is run on a general purpose computer
system or a dedicated machine), or a combination of both. In
one embodiment, the method 300 is performed by the
distributed mapping module 200 of FIG. 2.

At block 305, processing logic receives custom data and
an identifier. In one embodiment, the custom data is data that
a user would like to associate with an online service, such
that the user does not need to re-enter the information the
next time the user uses the online service. In one embodi-
ment, the online service is integrated with, or running on, a
website or an application loaded by the user. In an alternate
embodiment, the online service is separate from the website
and must be run prior to the user requesting the website or
application. For example, a user visiting a website for
myshoesize.com wants the online service to remember the
user’s shoe size once the user enters in the shoe size.

In one embodiment, the identifier is an asymmetric cryp-
tographic key. In an alternate embodiment, the identifier is
a fingerprint. In another alternate embodiment, the identifier
is an alphanumeric identifier for the user, such as an email
address, user name, etc. In one embodiment, the identifier is
inputted into a user interface. In an alternate embodiment,
the identifier can be transmitted from a user’s device (e.g.,
cell phone) to the service via Bluetooth, a direct Wi-Fi
connection, email, etc.

The custom data can be specified by the user via a user
interface provided by the service. The user interface can be
a text input box or form on a website for the service, an
application for the service on a smartphone, can be provided
by another service, etc. For example, a user at a shoe store
provides the user’s shoe size and an identifier for the user
(e.g., credit card number, email address, etc.) to an employee
of the shoe store, and the employee enters the shoe size and
identifier into a system for the service. In another example,
a user visiting the website for the myshoesize service, such
as www.myshoesize.com, logs into the website to access the
user’s account, and provides the user’s shoe size into a text
box. Within the account information, the user can enter in
the shoe size of the user. The service can store the custom
data and the identifier in a memory associated with the
service.

At block 310, processing logic generates a domain name
including the custom data and the identifier. In one embodi-
ment, processing logic generates the domain name by con-
catenating a website domain name, the custom data, and the
identifier. In an alternate embodiment, processing logic

US 9,485,214 B2

7

generates the domain name by copying the website domain
name into a first predefined portion of the generated domain
name (e.g., first segment of the domain name, top-level
domain (TLD) name, subdomain name (3" rightmost seg-
ment), etc.), copying the identifier into a second predefined
portion of the generated domain name (e.g., the part of the
domain name after the first predefined portion, the middle
segment of the domain name, the part of the domain name
to the left of the custom data, etc.), and copying the custom
data into a third predefined portion of the generated domain
name (e.g., the last part of the domain name, the lefimost
part of the domain name, the subdomain name, etc.). For
example, for an online website or service with a domain
name of language.com, if a user’s identifier is 123ABC45
and the custom data is English, the generated domain name
is English-123ABC45.language.com. The service’s domain
name can be used as a base for the generated domain name.
For example, the top-level domain of the service can be used
as top-level domain part of the generated domain name.

Prior to generating the domain name, processing logic can
check that the custom data and the identifier follow pre-
defined rules. The predefined rules can include rules for the
characters that can be used in a domain name, in an
identifier, in custom data, and any other received input. The
predefined rules can further include rules for the length of
the custom data and the identifier (e.g., no longer than 8
bytes total). For example, only letters a through z, numbers,
and hyphen characters can be used. In one embodiment, if
the custom data or the identifier does not follow the pre-
defined rules, processing logic can return an error to the user
to re-enter the data that did not follow the predefined rules.
In an alternate embodiment, if the custom data or the
identifier does not follow the predefined rules, processing
logic can modify the data that did not follow the rules such
that the modified data conforms to the rules.

At block 315, processing logic sends a lookup request for
the generated domain name to a DNS.

At block 320, processing logic receives an IP address for
the generated domain name from the DNS. The DNS can
send the IP address for the generated domain name in
response to receiving the lookup request for the generated
domain name. Performing a lookup request for a domain
name by a DNS is commonly known in the art. By perform-
ing a lookup request for the generated domain name, the
DNS generates and stores a mapping of the domain name to
the IP address. In one embodiment, the IP address received
from the DNS is an IPv6 address that is 16 bytes in length,
and includes the identifier. For example, for the generated
domain name of English-123ABC45.language.com, the
DNS sends an IP address of FA1C9288 123ABCA45.

In some embodiments, the method 300 can be repeated for
additional custom data for the user. In these embodiments,
the method 300 can generate a domain name including the
additional custom data and the identifier as above, thereby
allowing a user to store more than one piece of custom data
with the identifier of the user. For example, the user can store
an additional language spoken by the user, such as Spanish.
In this example, the generated domain name is Spanish-
123 ABC45 Janguage.com, which will also be stored with
the TP address of FA1C9288 123ABC45.

FIG. 4 is a flow diagram of an embodiment of a method
400 for acquiring custom data using reversed DNS records
for distributed mapping of asymmetric cryptographic keys to
the custom data. The method 400 is performed by processing
logic that may comprise hardware (circuitry, dedicated logic,
etc.), software (such as is run on a general purpose computer
system or a dedicated machine), or a combination of both. In

10

15

20

25

30

35

40

45

50

55

60

65

8

one embodiment, the method 400 is performed by the
distributed mapping module 200 of FIG. 2.

At block 405, processing logic receives an identifier. In
one embodiment, the identifier is a secure key (e.g., asym-
metric cryptographic key). In an alternate embodiment, the
identifier is a fingerprint. In another alternate embodiment,
the identifier is an alphanumeric identifier for the user, such
as an email address, user name, etc. In one embodiment, the
identifier is inputted into a user interface. In an alternate
embodiment, the identifier can be transmitted from a user’s
device (e.g., cell phone) to the service via Bluetooth, a direct
Wi-Fi connection, or via email. The identifier can be trans-
mitted by the user or another person moving a badge with an
RFID chip to a scanning device, scanning a quick response
code, etc. The identifier could be read by a car from the key
of the car, etc.

At block 410, processing logic determines an IP address
using the identifier. In one embodiment, the IP address is
determined by assembling the IP address from the identifier
and an IP address associated with the service. In an alternate
embodiment, processing logic generates the domain name
by copying the IP address associated with the website into
a first predefined portion of the determined IP address (e.g.,
upper 8 bytes, etc.) and copying the identifier into a second
predefined portion of the determined IP address (e.g., the
lower 8 bytes, etc.). In one embodiment, the IP address of the
website is cached in a memory associated with the online
service to which the custom data and the identifier were
previously provided. For example, for a website language.
com that associated with an online service, the online service
can determine that the IP address of language.com is
FA1C9288. If a user’s identifier is 123ABC45, the IP
address is determined to be FA1C9288 123ABC45. For
IPv6, the IP address of the website can be copied or stored
into the upper 8 bytes of the determined IP address and the
identifier can be stored into the lower 8 bytes of the
determined IP address.

At block 415, processing logic can send a reversed
domain name lookup request including the determined IP
address to a DNS.

At block 420, processing logic can receive a domain name
from the DNS. The DNS can send the domain name for the
determined IP address in response to receiving the reversed
domain name lookup request for the determined IP address.
Performing a reversed domain name lookup for a reversed
domain name lookup request for an IP address by a DNS is
commonly known in the art. By performing a reversed
domain name lookup request for the determined IP address,
the DNS looks up a mapping of the IP address and a domain
name to which the IP address maps. For example, for a
determined IP address of FA1C9288 123ABC45, the DNS
returns English-123ABC45 language.com. In one embodi-
ment, processing logic receives more than one domain name
from the DNS in response to the IP address if the user has
stored more than one piece of data with the service. For
example, if a user has stored English and Spanish as
languages spoken by the user, processing logic receives
English-123 ABC45.]language.com and Spanish-
123 ABC45.]anguage.com.

At block 425, processing logic can determine custom data
based on the received domain name. Processing logic deter-
mines the custom data by parsing the received domain name
and determining a predefined portion of the received domain
name as the custom data. In one embodiment, the predefined
portion of the received domain name is the upper 2 bytes of
the received domain name. In alternate embodiments, the
predefined portion of the received domain name can be a

US 9,485,214 B2

9

different portion of the received domain name without
departing from the scope of the invention. For example, if a
domain name of English-123ABC45.language.com, pro-
cessing logic could parse the portion in the domain name to
the left of the top-level domain to obtain “English™ as the
custom data stored for the identifier of 123ABCA45. In
another example, if a domain name of English-
123ABC45 language.redhat.com, processing logic could
parse the portion in the domain name to the left of the
domain name associated with the service to obtain “English”
as the custom data stored for the identifier of 123ABC45. If
one or more additional domain names are received in
response to the IP address, the additional domain names are
parsed for the custom data provided by those additional
domain names.

FIG. 5 illustrates a diagram of a machine in the exemplary
form of a computer system 500 within which a set of
instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected (e.g., networked) to other machines in a LAN, an
intranet, an extranet, or the Internet. The machine may
operate in the capacity of a server or a client machine in
client-server network environment, or as a peer machine in
a peer-to-peer (or distributed) network environment. The
machine may be a personal computer (PC), a tablet PC, a
set-top box (STB), a Personal Digital Assistant (PDA), a
cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of execut-
ing a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also
be taken to include any collection of machines that indi-
vidually or jointly execute a set (or multiple sets) of instruc-
tions to perform any one or more of the methodologies
discussed herein.

The exemplary computer system 500 includes a process-
ing device (processor) 502, a main memory 504 (e.g.,
read-only memory (ROM), flash memory, dynamic random
access memory (DRAM) such as synchronous DRAM
(SDRAM), double data rate (DDR SDRAM), or DRAM
(RDRAM), etc.), a static memory 506 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data
storage device 518, which communicate with each other via
a bus 530.

Processor 502 represents one or more general-purpose
processing devices such as a microprocessor, central pro-
cessing unit, or the like. More particularly, the processor 502
may be a complex instruction set computing (CISC) micro-
processor, reduced instruction set computing (RISC) micro-
processor, very long instruction word (VLIW) microproces-
sor, or a processor implementing other instruction sets or
processors implementing a combination of instruction sets.
The processor 502 may also be one or more special-purpose
processing devices such as an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), network processor, or the
like. The processor 502 is configured to execute instructions
522 for performing the operations and steps discussed
herein.

The computer system 500 may further include a network
interface device 508. The computer system 500 also may
include a video display unit 510 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(e.g., a mouse), and a signal generation device 516 (e.g., a
speaker).

15

20

25

40

45

60

10

The data storage device 518 may include a computer-
readable storage medium 524 on which is stored one or more
sets of instructions 522 (e.g., software) embodying any one
or more of the methodologies or functions described herein.
The instructions 522 may also reside, completely or at least
partially, within the main memory 504 and/or within the
processor 502 during execution thereof by the computer
system 500, the main memory 504 and the processor 502
also constituting computer-readable storage media. The
instructions 522 may further be transmitted or received over
a network 520 via the network interface device 508.

In one embodiment, the instructions 522 include instruc-
tions for a distributed mapping module (e.g., distributed
mapping module 200 of FIG. 2) and/or a software library
containing methods that call a distributed mapping module.
While the computer-readable storage medium 524 (ma-
chine-readable storage medium) is shown in an exemplary
embodiment to be a single medium, the term “computer-
readable storage medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“computer-readable storage medium” shall also be taken to
include any medium that is capable of storing, encoding or
carrying a set of instructions for execution by the machine
and that cause the machine to perform any one or more of
the methodologies of the present invention. The term “com-
puter-readable storage medium” shall accordingly be taken
to include, but not be limited to, solid-state memories,
optical media, and magnetic media.

In the foregoing description, numerous details are set
forth. It will be apparent, however, to one of ordinary skill
in the art having the benefit of this disclosure, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.

Some portions of the detailed description have been
presented in terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, for reasons of common usage, to refer
to these signals as bits, values, elements, symbols, charac-
ters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “identifying”, “presenting”, “updating”, “determining”,
“executing,” “providing,” “receiving,” or the like, refer to
the actions and processes of a computer system, or similar
electronic computing device, that manipulates and trans-
forms data represented as physical (e.g., electronic) quanti-
ties within the computer system’s registers and memories
into other data similarly represented as physical quantities

US 9,485,214 B2

11

within the computer system memories or registers or other
such information storage, transmission or display devices.

The present invention also relates to an apparatus for
performing the operations herein. This apparatus may be
constructed for the intended purposes, or it may comprise a
general purpose computer selectively activated or reconfig-
ured by a computer program stored in the computer. Such a
computer program may be stored in a computer readable
storage medium, such as, but not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing
electronic instructions.

It is to be understood that the above description is
intended to be illustrative, and not restrictive. Many other
embodiments will be apparent to those of skill in the art
upon reading and understanding the above description. The
scope of the invention should, therefore, be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.

What is claimed is:

1. A method comprising:

receiving, by a processing device of a user device, data

associated with a user account;
generating, by the processing device, a first domain name,
the first domain name comprising a first part, a second
part, and a third part, wherein the first part comprises
the data, the second part comprises an identifier of the
user account, and the third part comprises a second
domain name for which a Domain Name System
(DNS) service is to be requested;

transmitting, to a DNS, a first request to look up an
Internet Protocol (IP) address for the first domain
name;

receiving, from the DNS, a first IP address comprising a

first portion corresponding to the second domain name
and a second portion corresponding to the identifier of
the user account;

transmitting, to DNS, a reversed domain name lookup

request comprising a second IP address, wherein the
second IP address comprises the first portion and the
second portion;

receiving, from the DNS, the first domain name;

determining the data associated with the user account in

view of the first domain name; and

populating, by the processing device, the data associated

with the user account in a document presented on a user
interface associated with the user device.

2. The method of claim 1, wherein the data associated
with the user account comprises custom data for the user
account.

3. The method of claim 1, further comprising:

storing the first IP address corresponding to the first

domain name, wherein the first IP address is in view of
a predefined IP.

4. The method of claim 1, wherein the user device is a cell
phone that is connected to the DNS via a wireless connec-
tion.

5. The method of claim 1, wherein the identifier comprises
an asymmetric cryptographic key to the data associated with
the user account.

6. The method of claim 1, wherein determining the data
associated with the user account in view of the received first
domain name comprises:

parsing the received first domain name for the data

associated with the user account.

25

30

35

40

45

55

12

7. A non-transitory computer readable storage medium to
store instructions that, when executed by a processing
device of a user device, cause the processing device to:

receive, by the processing device, data associated with a

user account;
generate, by the processing device, a first domain name,
the first domain name comprising a first part, a second
part, and a third part, wherein the first part comprises
the data, the second part comprises an identifier of the
user account, and the third part comprises a second
domain name for which a Domain Name System
(DNS) service is to be requested;

transmit, to a DNS, a first request to look up an Internet
Protocol (IP) address for the first domain name;

receive, from the DNS, a first IP address comprising a first
portion corresponding to the second domain name and
a second portion corresponding to the identifier of the
user account;

transmit, to DNS, a reversed domain name lookup request

comprising a second IP address, wherein the second 1P
address comprises the first portion and the second
portion;

receive, from the DNS, the first domain name;

determine the data associated with the user account in

view of the first domain name; and

populate, by the processing device, the data associated

with the user account in a document presented on a user
interface associated with the user device.

8. The non-transitory computer readable storage medium
of claim 7, wherein the data associated with the user account
comprises custom data for the user account.

9. The non-transitory computer readable storage medium
of claim 7, wherein the processing device is further to:

store the first IP address corresponding to the first domain

name, wherein the first IP address is in view of a
predefined IP.

10. The non-transitory computer readable storage medium
of claim 7, wherein the user device is a cell phone that is
connected to the DNS via a wireless connection.

11. The non-transitory computer readable storage medium
of claim 7, wherein the identifier comprises an asymmetric
cryptographic key to the data associated with the user
account.

12. The non-transitory computer readable storage medium
of claim 7, wherein to determine data in view of the received
first domain name, the processing device is to:

parse the received first domain name for the data associ-

ated with the user account.

13. A computing device comprising:

a memory; and

a processing device, communicatively coupled to the

memory, wherein the processing device is to:

receive data associated with a user account;

generate a first domain name, the first domain name
comprising a first part, a second part, and a third part,
wherein the first part comprises the data, the second
part comprises an identifier of the user account, and
the third part comprises a second domain name for
which a Domain Name System (DNS) service is to
be requested;

transmit a first request to look up an Internet Protocol
(IP) address for the first domain name;

receive, from the DNS, a first IP address comprising a
first portion corresponding to the second domain
name and a second portion corresponding to the
identifier of the user account;

US 9,485,214 B2

13

transmit, to DNS, a reversed domain name lookup
request comprising a second IP address, wherein the
second IP address comprises the first portion and the
second portion;

receive, from the DNS, the first domain name;

determine the data associated with the user account in
view of the first domain name; and

populate, by the processing device, the data associated
with the user account in a document presented on a
user interface associated with the user device.

14. The computing device of claim 13, wherein the data
associated with the user account comprises custom data for
the user account.

15. The computing device of claim 13, wherein the
processing device is further to:

store the first IP address corresponding to the first domain

name, wherein the first IP address is in view of a
predefined IP.

16. The computing device of claim 13, wherein the user
device is a cell phone that is connected to the DNS via a
wireless connection.

17. The computing device of claim 13, wherein the
identifier comprises an asymmetric cryptographic key to the
data associated with the user account.

#* #* #* #* #*

10

15

20

25

14

